• Kim, H. H. & Gauguet, J. Pediatric elbow injuries. Semin. Ultrasound CT MRI 39, 384–396 (2018).

    Article 

    Google Scholar 

  • Major, N. M., Crawford, S. T., Kingshighway, S. B. & Louis, S. Elbow effusions in in trauma in adults and children: Is there an occult fracture?. AJR Am. J. Roentgenol. 178, 413–418 (2002).

    Article 

    Google Scholar 

  • Mattijssen-Horstink, L. et al. Radiologic discrepancies in diagnosis of fractures in a Dutch teaching emergency department: a retrospective analysis. Scand. J. Trauma Resusc. Emerg. Med. 28, 1–7 (2020).

    Article 

    Google Scholar 

  • Murphy, W. A. & Siegel, M. J. Elbow fat pads with new signs and extended differential diagnosis. Radiology 124, 659–665 (1977).

    CAS 
    Article 

    Google Scholar 

  • Al-Aubaidi, Z. & Torfing, T. The role of fat pad sign in diagnosing occult elbow fractures in the pediatric patient: A prospective magnetic resonance imaging study. J. Pediatr. Orthop. B 21, 514–519 (2012).

    Article 

    Google Scholar 

  • Jie, K., van Dam, L. & Hammacher, E. Isolated fat pad sign in acute elbow injury: Is it clinically relevant?. Eur. J. Emerg. Med. 23, 228–231 (2016).

    Article 

    Google Scholar 

  • Lyer, R. S., Thapa, M. M., Khanna, P. C. & Chew, F. S. Pediatric bone imaging: Imaging elbow trauma in children—A review of acute and chronic injuries. AJR Am. J. Roentgenol. 198, 1053–1068 (2012).

    Article 

    Google Scholar 

  • Fazal, M. I., Patel, M. E., Tye, J. & Gupta, Y. The past, present and future role of artificial intelligence in imaging. Eur. J. Radiol. 105, 246–250 (2018).

    Article 

    Google Scholar 

  • Kohli, M., Prevedello, L. M., Filice, R. W. & Geis, J. R. Implementing machine learning in radiology practice and research. AJR Am. J. Roentgenol. 208, 754–760 (2017).

    Article 

    Google Scholar 

  • Kim, D. H. & MacKinnon, T. Artificial intelligence in fracture detection: Transfer learning from deep convolutional neural networks. Clin. Radiol. 73, 439–445 (2018).

    CAS 
    Article 

    Google Scholar 

  • Guberina, N. et al. Detection of Early Infarction Signs with Machine Learning-Based Diagnosis by Means of the Alberta Stroke Program Early CT Score (ASPECTS) in the Clinical Routine (Springer, 2018). https://doi.org/10.1007/s00234-018-2066-5.

    Book 

    Google Scholar 

  • Duron, L. et al. Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: A multicenter cross-sectional diagnostic study. Radiology 000, 1–10 (2021).

    Google Scholar 

  • Taylor, A. G., Mielke, C. & Mongan, J. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study. PLoS Med. 15, e1002697. https://doi.org/10.1371/journal.pmed.1002697 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, C., Yao, D., Shi, Y. & Song, Z. Computer-aided detection in chest radiography based on artificial intelligence: A survey. Biomed. Eng. Online 17, 113 (2018).

    Article 

    Google Scholar 

  • Horng, M., Kuok, C., Fu, M., Lin, C. & Sun, Y. Cobb angle measurement of spine from X-ray images using convolutional neural network. Comput. Math. Methods Med. 2019, 6357171 (2019).

    Article 

    Google Scholar 

  • Masudur Rahman Al Arif, S. M., Knapp, K. & Slabaugh, G. Fully automatic cervical vertebrae segmentation framework for X-ray images. Comput. Methods Programs Biomed. 157, 95–111 (2018).

    Article 

    Google Scholar 

  • Lakhani, P. & Sundaram, B. Deep learning at chest radiography: Automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574–582 (2017).

    Article 

    Google Scholar 

  • Lee, H. et al. Fully automated deep learning system for bone age assessment. J. Digit Imaging 30, 427–441 (2017).

    Article 

    Google Scholar 

  • Alshamrani, K., Hewitt, A. & Offiah, A. C. Applicability of two bone age assessment methods to children from Saudi Arabia. Clin. Radiol. 75(156), e1-156.e9 (2020).

    Google Scholar 

  • Tiulpin, A. et al. Multimodal machine learning-based knee osteoarthritis progression prediction from plain radiographs and clinical data. Sci. Rep. 9, 20038 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Chung, S. W. et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop. 89, 468–473 (2018).

    Article 

    Google Scholar 

  • Gale, W., Oakden-Rayner, L., Carneiro, G., Bradley, A. P. & Palmer, L. J. Detecting hip fractures with radiologist-level performance using deep neural networks. eprint arXiv:1711.06504 (2017).

  • Kitamura, G. Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection. Eur. J. Radiol. 130, 109139 (2020).

    Article 

    Google Scholar 

  • Irvin, J. et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proc. AAAI Conf. Artif. Intell. 33, 590–597 (2019).

    Google Scholar 

  • Rajpurkar, P. et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225 (2017).

  • Lindsey, R. et al. Deep neural network improves fracture detection by clinicians. Proc. Natl. Acad. Sci. – PNAS. 115, 11591–11596 (2018).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • Kalmet, P. H. S. et al. Deep Learning in Fracture Detection: A Narrative Review (Informa UK Limited, 2020).

    Google Scholar 

  • England, J. R. et al. Detection of traumatic pediatric elbow joint effusion using a deep convolutional neural network. AJR Am. J. Roentgenol. 211, 1361–1368 (2018).

    Article 

    Google Scholar 

  • Choi, J. et al. Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Invest. Radiol. 55, 101–110 (2020).

    Article 

    Google Scholar 

  • Rayan, J. C., Reddy, N., Kan, J. H., Zhang, W. & Annapragada, A. Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol. Artif. Intell. 1, e180015 (2019).

    Article 

    Google Scholar 

  • Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. eprint arXiv:1409.1556 (2014).

  • Howard, A. G. et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. eprint arXiv:1704.04861 (2017).

  • He, K., Zhang, X., Ren, S. & Sun, J. Identity mappings in deep residual networks. eprint arXiv:1603.05027.

  • Szegedy, C., Ioffe, S., Vanhoucke, V. & Alemi, A. Inception-v4, inception-ResNet and the impact of residual connections on learning. eprint arXiv:1602.07261 (2016).

  • Zoph, B., Vasudevan, V., Shlens, J. & Quoc, V. Learning transferable architectures for scalable image recognition. eprint arXiv:1707.07012 (2017).

  • Chea, P. & Mandell, J. C. Current applications and future directions of deep learning in musculoskeletal radiology. Skeletal Radiol. 49, 183–197 (2020).

    Article 

    Google Scholar 

  • Deng, J., Dong, W., Socher, R., Li, L-J., Li, K. & Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (2009).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 3, 1026 (2018).

    ADS 
    Article 

    Google Scholar 

  • Manaster, B., May, D. & Gisler, D. Musculoskeletal imaging 4th edn. (Elsevier Saunders, 2013).

    Google Scholar 

  • By AKDSEO