• Lin, X.-J., Lin, I. M. & Fan, S.-Y. Methodological issues in measuring health-related quality of life. Tzu Chi Med. J. 25, 8–12 (2013).

    Article 

    Google Scholar 

  • Guyatt, G. H. et al. Exploration of the value of health-related quality-of-life information from clinical research and into clinical practice. Mayo Clin. Proc. 82, 1229–1239 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Virani, S. S. et al. Heart disease and stroke statistics 2021 update. Circulation 143, e254–e743 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Carod-Artal, F. J. & Egido, J. A. Quality of life after stroke: The importance of a good recovery. Cerebrovasc. Dis. 27, 204–214 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Nichols-Larsen, D. S., Clark, P. C., Zeringue, A., Greenspan, A. & Blanton, S. Factors influencing stroke survivors’ quality of life during subacute recovery. Stroke 36, 1480–1484 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Bzdok, D. & Ioannidis, J. P. A. Exploration, inference, and prediction in neuroscience and biomedicine. Trends Neurosci. 42, 251–262 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Guyon, I. & Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).

    MATH 

    Google Scholar 

  • Heo, J. et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke 50, 1263–1265 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Lin, W. Y. et al. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation. Int. J. Med. Inform. 111, 159–164 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Sale, P. et al. Predicting motor and cognitive improvement through machine learning algorithm in human subject that underwent a rehabilitation treatment in the early stage of stroke. J Stroke Cerebrovasc. Dis. 27, 2962–2972 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Wang, H. L. et al. Automatic machine-learning-based outcome prediction in patients with primary intracerebral hemorrhage. Front. Neurol. 10, 910 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thakkar, H. K., Liao, W. W., Wu, C. Y., Hsieh, Y. W. & Lee, T. H. Predicting clinically significant motor function improvement after contemporary task-oriented interventions using machine learning approaches. J. Neuroeng. Rehabil. 17, 131 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tokmakçı, M., Ünalan, D., Soyuer, F. & Öztürk, A. The reevaluate statistical results of quality of life in patients with cerebrovascular disease using adaptive network-based fuzzy inference system. Expert Syst. Appl. 34, 958–963 (2008).

    Article 

    Google Scholar 

  • Morris, J. H., van Wijck, F., Joice, S. & Donaghy, M. Predicting health related quality of life 6 months after stroke: The role of anxiety and upper limb dysfunction. Disabil. Rehabil. 35, 291–299 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Sokolova, M. & Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf Process Manag. 45, 427–437 (2009).

    Article 

    Google Scholar 

  • Turner, D. L., Ramos-Murguialday, A., Birbaumer, N., Hoffmann, U. & Luft, A. Neurophysiology of robot-mediated training and therapy: A perspective for future use in clinical populations. Front. Neurol. 4, 184 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deconinck, F. J. et al. Reflections on mirror therapy: A systematic review of the effect of mirror visual feedback on the brain. Neurorehabil. Neural Repair 29, 349–361 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Schlaug, G., Renga, V. & Nair, D. Transcranial direct current stimulation in stroke recovery. Arch. Neurol. 65, 1571–1576 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L. & Alberts, J. L. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: A randomized clinical trial. Phys Ther. 90, 493–504 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mehrholz, J. Is electromechanical and robot-assisted arm training effective for improving arm function in people who have had a stroke?: A cochrane review summary with commentary. Am. J. Phys. Med. Rehabil. 98, 339–340 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Thieme, H. et al. Mirror therapy for improving motor function after stroke. Cochrane Database Syst. Rev. 7, Cd008449 (2018).

    PubMed 

    Google Scholar 

  • Bornheim, S. et al. Evaluating the effects of tDCS in stroke patients using functional outcomes: A systematic review. Disabil. Rehabil. 44, 13–23 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Kang, N., Summers, J. J. & Cauraugh, J. H. Transcranial direct current stimulation facilitates motor learning post-stroke: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 87, 345 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Liao, W. W. et al. Timing-dependent effects of transcranial direct current stimulation with mirror therapy on daily function and motor control in chronic stroke: A randomized controlled pilot study. J. Neuroeng. Rehabil. 17, 101 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • An, T. G., Kim, S. H. & Kim, K. U. Effect of transcranial direct current stimulation of stroke patients on depression and quality of life. J. Phys. Ther. Sci. 29, 505–507 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wu, C. Y., Huang, P. C., Chen, Y. T., Lin, K. C. & Yang, H. W. Effects of mirror therapy on motor and sensory recovery in chronic stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 94, 1023–1030 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Hsieh, Y. W. et al. Effects of home-based versus clinic-based rehabilitation combining mirror therapy and task-specific training for patients with stroke: A randomized crossover trial. Arch. Phys. Med. Rehabil. 99, 2399–2407 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Hsieh, Y. W. et al. Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: A cluster controlled trial. Sci. Rep. 8, 2091 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Woodbury, M. L., Velozo, C. A., Richards, L. G. & Duncan, P. W. Rasch analysis staging methodology to classify upper extremity movement impairment after stroke. Arch. Phys. Med. Rehabil. 94, 1527–1533 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Gregson, J. M. et al. Reliability of the Tone Assessment Scale and the modified Ashworth scale as clinical tools for assessing poststroke spasticity. Arch. Phys. Med. Rehabil. 80, 1013–1016 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rossi, S. et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert guidelines. Clin. Neurophysiol. 132, 269–306 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Duncan, P. W., Bode, R. K., Min Lai, S. & Perera, S. Rasch analysis of a new stroke-specific outcome scale: The Stroke Impact Scale. Arch. Phys. Med. Rehabil. 84, 950–963 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Carod-Artal, F. J., Coral, L. F., Trizotto, D. S. & Moreira, C. M. The Stroke Impact Scale 3.0. Stroke 39, 2477–2484 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Lin, K. C. et al. Psychometric comparisons of the Stroke Impact Scale 3.0 and stroke-specific quality of life scale. Qual. Life Res. 19, 435–443 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Richardson, M., Campbell, N., Allen, L., Meyer, M. & Teasell, R. The stroke impact scale: Performance as a quality of life measure in a community-based stroke rehabilitation setting. Disabil. Rehabil. 38, 1425–1430 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Duncan, P. W. et al. The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke 30, 2131–2140 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lang, C. E., Edwards, D. F., Birkenmeier, R. L. & Dromerick, A. W. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch. Phys. Med. Rehabil. 89, 1693–1700 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • van der Lee, J. H. et al. Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke 30, 2369–2375 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Hägg, O., Fritzell, P. & Nordwall, A. The clinical importance of changes in outcome scores after treatment for chronic low back pain. Eur. Spine J. 12, 12–20 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Wu, C. Y., Chuang, L. L., Lin, K. C., Lee, S. D. & Hong, W. H. Responsiveness, minimal detectable change, and minimal clinically important difference of the Nottingham Extended Activities of Daily Living Scale in patients with improved performance after stroke rehabilitation. Arch. Phys. Med. Rehabil. 92, 1281–1287 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Lemmens, R. J., Timmermans, A. A., Janssen-Potten, Y. J., Smeets, R. J. & Seelen, H. A. Valid and reliable instruments for arm-hand assessment at ICF activity level in persons with hemiplegia: A systematic review. BMC Neurol. 12, 21 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, C. M. et al. Potential predictors for health-related quality of life in stroke patients undergoing inpatient rehabilitation. Health Qual. Life Outcomes 13, 118 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coupar, F., Pollock, A., Rowe, P., Weir, C. & Langhorne, P. Predictors of upper limb recovery after stroke: A systematic review and meta-analysis. Clin. Rehabil. 26, 291–313 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Chiti, G. & Pantoni, L. Use of Montreal Cognitive Assessment in patients with stroke. Stroke 45, 3135–3140 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Fugl-Meyer, A. R., Jaasko, L., Leyman, I., Olsson, S. & Steglind, S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975).

    CAS 
    PubMed 

    Google Scholar 

  • Wolf, S. L. et al. Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke 32, 1635–1639 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gregson, J. M. et al. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 29, 223–228 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • van der Lee, J. H., Beckerman, H., Knol, D. L., de Vet, H. C. & Bouter, L. M. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke 35, 1410–1414 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • Desrosiers, J., Bravo, G., Hébert, R., Dutil, É. & Mercier, L. Validation of the Box and Block Test as a measure of dexterity of elderly people: Reliability, validity, and norms studies. Arch. Phys. Med. Rehabil. 75, 751–755 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, C. Y., Chuang, I. C., Ma, H. I., Lin, K. C. & Chen, C. L. Validity and responsiveness of the Revised Nottingham Sensation Assessment for outcome evaluation in stroke rehabilitation. Am. J. Occup. Ther. 70, 1–8 (2016).

    Google Scholar 

  • Linacre, J. M., Heinemann, A. W., Wright, B. D., Granger, C. V. & Hamilton, B. B. The structure and stability of the functional independence measure. Arch. Phys. Med. Rehabil. 75, 127–132 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sarker, S. J., Rudd, A. G., Douiri, A. & Wolfe, C. D. Comparison of 2 extended activities of daily living scales with the Barthel Index and predictors of their outcomes: Cohort study within the South London Stroke Register (SLSR). Stroke 43, 1362–1369 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Tin, K. H. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998).

    Article 

    Google Scholar 

  • Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27 (1967).

    MATH 
    Article 

    Google Scholar 

  • Zhu, M., Chen, W., Hirdes, J. P. & Stolee, P. The K-nearest neighbor algorithm predicted rehabilitation potential better than current clinical assessment protocol. J. Clin. Epidemiol. 60, 1015–1021 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Manning, T., Sleator, R. D. & Walsh, P. Biologically inspired intelligent decision making. Bioengineered 5, 80–95 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Abedi, V. et al. Novel screening tool for stroke using artificial neural network. Stroke 48, 1678–1681 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Smola, A. J. & Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • Kim, J. K., Choo, Y. J. & Chang, M. C. Prediction of motor function in stroke patients using machine learning algorithm: Development of practical models. J. Stroke Cerebrovasc. Dis. 30, 105856 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Jiawei, H. M. K. & Jian, P. Data Mining: Concepts and Techniques 2nd edn. (Morgan Kaufmann, 2006).

    MATH 

    Google Scholar 

  • Shouman, M., Turner, T. & Stocker, R. Using decision tree for diagnosing heart disease patients. In Proceedings of the Ninth Australasian Data Mining Conference, vol. 121, 23–30 (Australian Computer Society, Inc., 2011).

  • Kent, J. T. Information gain and a general measure of correlation. Biometrika 70, 163–173 (1983).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Wang, W. et al. A systematic review of machine learning models for predicting outcomes of stroke with structured data. PLoS ONE 15, e0234722 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Luo, W. et al. Guidelines for developing and reporting machine learning predictive models in biomedical research: A multidisciplinary view. J. Med. Internet Res. 18, e323 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rodriguez, J. D., Perez, A. & Lozano, J. A. Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32, 569–575 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    MATH 
    Article 

    Google Scholar 

  • Hall, M. et al. The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11, 10–18 (2009).

    Article 

    Google Scholar 

  • Pandey, A. K., Rajpoot, D. S. & Rajpoot, D. S. A comparative study of classification techniques by utilizing WEKA. In 2016 International Conference on Signal Processing and Communication (ICSC) (2016).

  • Frank, E., Hall, M., Trigg, L., Holmes, G. & Witten, I. H. Data mining in bioinformatics using Weka. Bioinformatics 20, 2479–2481 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sim, J. A. et al. The major effects of health-related quality of life on 5-year survival prediction among lung cancer survivors: Applications of machine learning. Sci. Rep. 10, 10693 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scrutinio, D. et al. Machine learning to predict mortality after rehabilitation among patients with severe stroke. Sci. Rep. 10, 20127 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Apao, N. J., Feliscuzo, L. S., Romana, C. L. S. & Tagaro, J. Multiclass classification using random forest algorithm to prognosticate the level of activity of patients with stroke. IJSTR 9, 1233–1240 (2020).

    Google Scholar 

  • Badriyah, T., Sakinah, N., Syarif, I. & Syarif, D. R. Machine learning algorithm for stroke disease classification. In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) (2020).

  • White, J. et al. Predictors of health-related quality of life in community-dwelling stroke survivors: A cohort study. Fam. Pract. 33, 382–387 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Katona, M., Schmidt, R., Schupp, W. & Graessel, E. Predictors of health-related quality of life in stroke patients after neurological inpatient rehabilitation: A prospective study. Health Qual. Life Outcomes 13, 58 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Huang, P. C. et al. Predictors of motor, daily function, and quality-of-life improvements after upper-extremity robot-assisted rehabilitation in stroke. Am. J. Occup. Ther. 68, 325–333 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Nijenhuis, S. M. et al. Strong relations of elbow excursion and grip strength with post-stroke arm function and activities: Should we aim for this in technology-supported training?. J. Rehabil. Assist. Technol. Eng. 5, 2055668318779301 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clarke, P. & Black, S. E. Quality of life following stroke: Negotiating disability, identity, and resources. J. Appl. Gerontol. 24, 319–336 (2005).

    Article 

    Google Scholar 

  • Pedersen, S. G. et al. Stroke-specific quality of life one-year post-stroke in two Scandinavian country-regions with different organisation of rehabilitation services: A prospective study. Disabil. Rehabil. 43, 3810–3820 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Doyle, S., Bennett, S., Fasoli, S. E. & McKenna, K. T. Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst. Rev. 6, CD006331 (2010).

    Google Scholar 

  • Wu, C. W., Seo, H. J. & Cohen, L. G. Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Arch. Phys. Med. Rehabil. 87, 351–357 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Turville, M., Carey, L. M., Matyas, T. A. & Blennerhassett, J. Change in functional arm use is associated with somatosensory skills after sensory retraining poststroke. Am. J. Occup. Ther. 71, 1–9 (2017).

    Article 

    Google Scholar 

  • Meyer, S., Karttunen, A. H., Thijs, V., Feys, H. & Verheyden, G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys. Ther. 94, 1220–1231 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Rokach, L. Ensemble methods for classifiers. In Data Mining and Knowledge Discovery Handbook (eds Maimon, O. & Rokach, L.) 957–980 (Springer, 2005).

    MATH 
    Chapter 

    Google Scholar 

  • Hung, C. Y., Chen, W. C., Lai, P. T., Lin, C. H. & Lee, C. C. Comparing deep neural network and other machine learning algorithms for stroke prediction in a large-scale population-based electronic medical claims database. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2017, 3110–3113 (2017).

    Google Scholar 

  • By AKDSEO